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ABSTRACT 

 
This paper summarizes a new capability in the topology optimization, which employs an 
advanced substructuring technique in the multi-domain topology optimization for the purpose of 
designing a complex and practical mechanical system.  In the substructuring method, a structural 
system is divided into a series of substructures, which can be designed separately with the 
coupling of the subsystems.  The condensation technique is applied to the substructures where 
the design changes are not considered at the current step.  For the substructures where the 
optimal design is sought, the multi-domain topology optimization is applied in order to achieve 
the design objectives prescribed.  The embedded advanced substructuring technique allows users 
to select nodal displacements and modal coordinates as generalized coordinates in the reduced-
order models, and to use advanced Quasi-Static modes for high efficient modal analyses.  
Examples are illustrated in order to demonstrate the feasibility of the proposed technique to the 
topology optimization problem.   
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1. INTRODUCTION 
 
Topology optimization (1-4) has been widely adopted in the design process for developing light-
weight and high-performance structures, especially, in automotive vehicle structural systems.  A 
bottleneck, however, is how to apply the topology optimization technique to deal with a large 
and complex engineering structure, such as a major subsystem in a full vehicle system.  In the 
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practical design, a structural system may contain a large number of components and 
substructures and each substructure may have a large number (hundreds of thousands) degrees of 
freedom in its discretized finite element model.  The direct adoption of the whole system in a 
topology optimization process is inefficient and even formidable from the aspect of 
computational resource and the aspect to find a solution for the optimization problem. 
  
This research aims at the implementation of advanced substructuring techniques (11,16-19) in 
the multi-domain topology optimization for designing complex mechanical systems.  In the 
substructuring method (17-19), a mechanical system is divided into a series of, or multileveled, 
substructures, which can be designed separately with the coupling effects of the subsystems.  The 
advanced substructuring technique allows users to select nodal displacements at the interfaces of 
the substructures and modal coordinate as generalized coordinates in the reduced-order model, 
and to use advanced Quasi-Static modes (11,17) for high efficient modal analyses.  The 
condensation technique can be applied to the substructures where the design change is not 
considered at the current step.  For the substructures where the optimal design is sought, the 
multi-domain topology optimization (20) can be applied for those subdomains in order to 
achieve the design objectives of the whole structural system.  Another usage of this approach is 
that, the topology optimization can be zoomed into any subdomain within a design domain at 
anytime in order to lay out the details of the design at local area, or to reduce the stress 
concentration at a localized location.  Using this divide-and-conquer design methodology, an 
optimal structural design can be obtained for the coupled substructures with reduced 
computational cost and better solvability of the design problem of large size, which are crucial in 
the application of the topology optimization technique for real engineering design problems.  
 

2. MULTI-DOMAIN TOPOLOGY OPTIMIZATION 
 
A multi-domain topology optimization (MDTO) approach is proposed in (20), which can be 
considered as a generalization of the standard, single-domain topology optimization developed in 
the earlier stage (5-9).  In contrast to single-domain topology optimization, in which a given 
amount of the material is assigned to the entire design domain, MDTO allows the designer to 
assign different amounts of the material, or even different materials, to the various subdomains 
of the structure. Figure 1 depicts a structural domain that is divided into three subdomains, where 
a certain amount of material A is assigned to Subdomain 1, a different amount of material B is 
distributed into Subdomain 2, and Subdomain 3 is considered as a non-design domain, for which 
the material distribution is not allowed to change at the current design stage. 

Subdomain 1

Subdomain 2

Subdomain 3
(non-design domain)

with material A

with material B

 
 

Figure 1. A multi-domain topology optimization problem 
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In the general case, the MDTO problem can be formulated as 

Minimize   ( )
Subject to: ( ) 0   ( 1,2,..., )

                     ( 1,2,..., )
                  (and State Equations)

j

ii i

f
h j m

x x x i n

≤ =

≤ ≤ =

X
X

 (1) 

where f = f(X) denotes the objective function, ( )j jh h= X  denotes the j-th constraint function for 
the volume (or weight) of the j-th substructure in the j-th subdomain (where 1,  2,  ,  j m= ); m is 
the total number of the subdomains; X = { }1 2,  ,  ...,  T

nx x x  denotes the vector of the design 
variables, where n is the total number of the design variables; and ix  and ix  are the lower and 
upper bounds of design variable ix , respectively. Note that f(X) in Eq. (1) also needs to satisfy 
the state equations for the structural problem at hand. These state equations may include, for 
example, the static equilibrium equation, the equation that defines the free vibration eigenvalue 
problem, or the equation for the dynamic forced response.  

 
The basic idea in the topology optimization technique proposed by Bendsøe and Kikuchi in 1988 
(4) is to transform the optimal topology design problem into an equivalent Optimal Material 
Distribution (OMD) problem, as illustrated in Fig. 2. Here the structural domain is assumed to be 
filled with a non-homogeneous composite material characterized by a variable microstructure.  A 
typical microstructure is formed inside an empty rectangle in a unit cell with three design 
variables a, b and θ, which are dimensions and orientation of the microstructure, respectively.  
Using homogenization, the effective material constants can be obtained as (4): 
 

( ,  ,  ) ,   ( ,  )H H H Ha b a bθ ρ ρ= =D D  (2) 

where HD  denotes the effective elastic coefficient matrix at the material point, and Hρ  is the 
associated effective mass density. Both HD  and Hρ  are functions of the design variables a and b, 
and HD  is also a function of the orientation variable θ at the material point.  
 
In the optimization process, the microstructure can vary anywhere between "empty" (a=b=0) and 
"solid" (a=b=1) using the design variables a and b, and it can be rotated using the orientation 
variable θ. Therefore, if one assumes that the total amount of the material, which is prescribed 
for the design problem at hand, remains constant in the optimization process, then the material 
will be moved from a region of the structural domain into another region to produce a new 
distribution of the material.  Structural optimization technique (10,12-15) has been used to search 
for the optimal material distribution.  By moving and orienting the material so as to improve the 
objective function of the optimization problem, one can finally obtain an OMD that corresponds 
to the optimal structure. Various microstructure models have been developed based on this 
fundamental concept, including artificial material models, which represent a simplification of 
this concept (1-4). 



 4

Homogenization 

  
Microstructure 

:   T d
ε

ε δ
Ω

Ω Ω +∫ ε Dε

T
Externald W

ε
ρ δ

Ω
Ω =∫ δu u

Homogenized  
elastic coefficients 

b/2 

θ 

Unit cell 

Design domain
(non-homogeneous)

a/2 

 
Figure 2. Basic concept of the homogenization-based topology optimization method 

 
3. ADVANCED SUBSTRUCTURING METHODS 

 
Using a standard finite element method, the state equation governing the dynamic response of 
the i-th structure shown in Fig. 1 can be obtained as: 
 

( ) ( ) ( ) ( ) ( ) ( ) ( )i i i i i i i+ + =M u C u K u f  (3) 

where M(i), C(i), and K(i) are the mass, damping, and stiffness matrices of the i-th substructure in 
the system, respectively. M(i) and K(i) can be obtained by assembling the elementary mass and 
stiffness matrices as  

( ) ( )( ) ( )

1 1

   and    
el el

i i

n n
i i

e e
e e
A A

= =

= =M m K k  (4) 

where ( ,  )e e e ea b=m m  and ( ,  ,  )e e e e ea b θ=k k  are the mass and stiffness matrices of the finite 
element e, which are functions of ,  ,  and e e ea b θ , where ,  ,  and e e ea b θ  are the discretized design 
variables of ,  ,  and a b θ  , respectively, at the elementary level ( 1,  2,  ,  ele n= ). In the special 
case of proportional damping, the viscous damping matrix C(i) in Eq. (3) can be obtained as 

( ) ( )i i
iβ=C K , where iβ  is the damping coefficient of the i-th substructure. 

 
State equations for the topology optimization problem, Eq. (3), usually feature a very large 
number of variables (typically the nodal displacements). Even for a simple structure, a finely 
discretized finite element model can involve from thousands to millions of nodal variables. In 
topology optimization, such fine meshes are usually required for obtaining smooth boundaries 
and interfaces. Substructuring methods provide an effective tool for condensing the analysis 
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variables into a much smaller set, thus greatly reducing computer memory requirements and 
increase computational efficiency. This approach is particularly natural and useful for multi-
domain topology optimization problems. While substructuring can be used in several ways to 
improve computational efficiency, in this paper the condensed analysis variables are those 
associated with the non-design subdomains of the structure (see Fig. 1). The nodal displacement 
variables can be condensed into those at the boundaries of the subdomain when a static analysis 
is considered, and with an additional small number of generalized modal coordinates when a 
dynamic problem is considered. Note that the design and non-design subdomains can be 
switched if necessary during the different design stages. 
 
In the case of a static condensation, assuming that au  denotes the vector of nodal displacements 
associated with the active nodes (usually the boundary nodes) of a non-design subdomain, and 

ou  denotes the vector of the nodal displacements associated with the other nodes (usually the 
internal nodes) of the same subdomain, the state equation for the subdomain can be written as 

( ) ( ) ( )i i i
oo oa o o

ao aa a a

     
=    

     

k k u f
k k u f

 (5) 

where ( ,  ,  )ij i j o a=k  are the blocks of the stiffness matrix of the subdomain associated with ou  
and au , respectively, and of  and af  are the corresponding nodal force vectors. Then Eq. (5) can 
be condensed into an equation that involves only au , namely, 

* *
aa a a=k u f  (6) 

where  oaooaoaaaa kkkkk 1* −−= and  oooaoaa fkkff 1* −−= . For the sake of simplicity, but not losing 
the generality, in the following discussions, we assume 0o =f , and therefore we have *

a a=f f . 

Note that the coordinate transformation for the condensation is 

o
a

a

 
= = 

 

u
u Cu

u
 (7) 

where the transformation matrix is 

1
oa oo oa

aa

−   −
= =   

   

C k k
C

C I
 (8) 

Each column of C is called a “static mode” or a “constraint mode”. 

In the case of a dynamic condensation, the state equation can be written as 

oo oa o oo oa o

ao aa a ao aa a a

  
         

+ =        
         

k k u m m u 0
k k u m m u f

 (9) 
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where ( ,  ,  )ij i j o a=m  denote the blocks of the mass matrix. We now divide the active nodal set 
(a-set) into two subsets p-set and s-set (namely a p s= ⊗ ), where the s-set is defined by those 
nodes that will be fixed in the eigenmodes extraction process, and the p-set is defined by the 
other nodes (those will be free in the eigenmodes extraction process).  Defining an eigenvalue 
problem with respect to the nodal set n o p= ⊗ , namely 

0oo op oo op on
n

po pp po pp pn
  λ

      
− =             

k k m m φ
k k m m φ

 (10) 

we now can obtain a  set of normal modes from Eq. (10), namely on

pn

 
=  

 

Φ
Φ

Φ
.   

Using the normal modes calculated from Eq. (10), the transformation equation, Eq. (8) is 
extended as 

o n

a a

 
   

=   
   

u q
D

u u
 (11) 

where nq  is a vector of so-called generalized modal coordinates. The transformation matrix D 
for the dynamic problem can then be obtained as 

0
on op pn oa− 

=  
 

Φ Ψ Φ Ψ
D

I
 (11) 

The matrix oa 
=  

 

Ψ
Ψ

I
 contains the so-called “quasi-static modes” (QSM) (11,17), 

where oa op os =  Ψ Ψ Ψ , which can be calculated by solving the quasi-static (frequency response) 
problem associated with Eq. (2). Theoretically, Ψ  can be written as 

( ) ( )12 2
oo c oo oa c oaω ω

− − − −
 =
  

k m k mΨ
I

 (12) 

where ωc is the “central frequency,” which is determined by the frequency range of interest 
(11,17). Note that the size of nq  in Eq. (10) is usually far smaller than ou , therefore, the 
coordinate transformation Eq. (11) (as well as Eq. (8)) significantly reduces the size of the 
analysis problem. For a static analysis, Eq. (8) does not induce any error into the original 
analysis problem. But for a dynamic analysis problem, Eq. (11) is an approximation, and the 
error can be controlled by properly choosing the central frequency and/or considering additional 
modal coordinates in Eq. (11). Note that for 0cω = , the QSM defined in Eq. (12) reduce to the 
traditional static (constraint) modes proposed by Hurty (18) and Craig and Bampton (19), which 
are given in Eq. (8). Compared with the static modes, the QSM can significantly reduce both the 
size of the analysis problem and the error induced by the coordinate reduction process, 
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particularly within the frequency range of interest. This is because not only the higher-frequency 
modes are truncated, but also the lower-frequency modes outside the frequency range of interest. 
Therefore, the QSM can handle dynamic response problems within higher frequency ranges, and 
they include the traditional static modes as a special case. Note that the central frequency is 
typically selected at the middle of the frequency domain of interest, and that multiple central 
frequencies can also be used (17).  Finally, note that if p-set defined in Eq. (10) is null, then Eq. 
(11) is reduced to a fixed-interface CMS method and the Craig-Bampton method can be 
considered as a special case of it when ωc=0.  On the other hand, if p-set becomes a-set, the Eq. 
(11) is reduced to a so-called free-interface CMS method. 

 
4. EXAMPLES 

 
4.1 Refine design in a zoomed-in area  A cantilevered sandwich beam design problem is shown 
in Fig. 3 to illustrate the multi-domain topology optimization along with the substructuring 
technique.  The external force, F, represents a combination load of pushing in axial direction and 
bending in lateral direction.  Four design subdomains are specified in Fig. 3, and they are shown 
in green and yellow.  The blue non-design domains are filled with solid-cell material (a=b=1 in 
Eq. 2).  The design objective is to obtain an optimal material distribution in the design domain so 
that the cantilevered beam has the maximum rigidity under the specified external load, F.   
 

 
 

Figure 3.  A cantilevered sandwich beam design problem.  
 
A multi-domain topology optimization problem is considered with a finite element model of 
3,906 degrees-of-freedom.  The material density for each design subdomain is given as 20% with 
an even distribution among the subdomains.   
 
A converged optimal material distribution for the first design problem is shown in Fig. 4-a.  The 
von Mises stress resulted from this design is shown in Fig. 4-a, with the normalized maximum 
stress 16.6, occurring at the elements near subdomain 1 and 2.  In order to reduce the maximum 
stress in the first design, additional 13% material is added to subdomains 1 and 2 while other 
design domains are fixed at the current step.  The substructuring technique is utilized to condense 
the DOFs in subdomains 3 and 4, which reduce the total DOFs from 3,906 to 960.  The design 
domain in the second step optimization is shown in the grey shadow in Fig. 4-b.   
 
After the second step topology optimization, the maximum von Mises stress is then reduced to 
13.7 as shown in Fig. 4-c.  To further reduce the maximum stress in the current design, the 
topology optimization is zoomed into two new small design domains near the stress 
concentration areas as shown in Fig. 4-d in grey color.  All the remaining subdomains, the 
original design subdomains 1-4 and the blue non-design domain in Fig. 3, are condensed through 
the substructuring technique.  The total DOFs of the FE model for the final stage optimal design 

F 
1 2 3 4
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becomes 336, which is significantly smaller than the original 3,906 in the original optimization 
problem.  The final optimal design is shown in Fig. 4-e.  The maximum von Mises stress is now 
reduced to 10.4 from the maximum stress 16.6 in the first step optimization by adding a small 
percentage of the material.    
   

          

 (a) von Mises stress after the 1st topology optimization            (b) design problem for the 2nd design process 

         

(c) von Mises stress after the 2nd topology optimization             (d) design problem for the 3rd design process  

                 

(e)  von Mises stress after the final topology optimization      (f) the final optimum design with smoothed boundaries 

Figure 4.  The optimization design procedure and the results 

Through the three-stage multi-domain topology optimization, an optimal design has been 
obtained with the maximum rigidity and significantly reduced maximum stress, the later 
improves the strength of the structure.  The maximum stress is reduced with the substructuring-
technique-based refine design procedure developed in this paper. 
 
4.2 Coupled substructures design  The second example demonstrates a follow-up optimal 
design problem for the cantilevered beam illustrated in section 4.1.  Given the optimal design 
layout shown in Fig. 4-f, we now consider an optimal fixture design problem for the structure.  

Maximum stress = 16.6 New design domain 

Maximum stress = 13.7 
Additional new design 
domain 

Maximum stress = 10.4 
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The left-end fixture part is redesigned using the topology optimization process with reduced 
amount of material for the fixture.  The initial design problem is shown in Fig. 5-a, while light 
blue color indicates the design domain for the fixture. 
 
In Fig. 5-a, the material constraint for fixture design domain is 37.5%.  The optimal structure 
obtained in section 4.1 is condensed with substructuring technique.  The final DOFs of the FE 
model used in current optimization is 914, while the DOFs of the full FE model is 3,906.  The 
design result for the fixture is shown in Fig. 5-b,c,d.  It is seen that materials in the design 
domain are moved to the upper and lower edges to withstand the lateral bending load and a hole 
is opened in the middle in order to reduce the weight of the fixture.  The final optimal design is 
shown in Fig. 5-d with the smoothed boundaries.     

 

 

(a) fixture design problem with the fixed structural       (b) optimal fixture design obtained with the fixed    
      design                                                                              structural layout 

 

(c) stress distribution and displacement of the                (d) final shape of the system with the smoothed  
     coupled structure-fixture system                                      boundaries 
 
Figure 5.  The topology optimization in the fixture region.        

  
5. CONCLUSIONS 

 
An optimal design problem is illustrated to demonstrate the benefits from embedding the 
substructuring technique in the multi-domain topology optimization process.  It is seen that the 
substructuring technique can reduce the size of the finite element model, thus improves the 
solvability of the design problem.  Stress concentration can be overcome efficiently using the 

Design domain for 
fixture layout  

Fixed design 
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zoomed-in topology optimization in the neighborhood of the stress concentration.  The proposed 
substructuring technique can be also applied to dynamic problems such as the eigenmode 
optimization, and the frequency response optimization, and be readily extended to deal with 
three-dimension design problems for complex mechanical systems.       
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